Log in to save to my catalogue

Radio Galaxy Zoo: Unsupervised Clustering of Convolutionally Auto-encoded Radio-astronomical Images

Radio Galaxy Zoo: Unsupervised Clustering of Convolutionally Auto-encoded Radio-astronomical Images

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_crossref_citationtrail_10_1088_1538_3873_ab213d

Radio Galaxy Zoo: Unsupervised Clustering of Convolutionally Auto-encoded Radio-astronomical Images

About this item

Full title

Radio Galaxy Zoo: Unsupervised Clustering of Convolutionally Auto-encoded Radio-astronomical Images

Publisher

Philadelphia: The Astronomical Society of the Pacific

Journal title

Publications of the Astronomical Society of the Pacific, 2019-10, Vol.131 (1004), p.108011

Language

English

Formats

Publication information

Publisher

Philadelphia: The Astronomical Society of the Pacific

More information

Scope and Contents

Contents

This paper demonstrates a novel and efficient unsupervised clustering method with the combination of a self-organizing map (SOM) and a convolutional autoencoder. The rapidly increasing volume of radio-astronomical data has increased demand for machine-learning methods as solutions to classification and outlier detection. Major astronomical discover...

Alternative Titles

Full title

Radio Galaxy Zoo: Unsupervised Clustering of Convolutionally Auto-encoded Radio-astronomical Images

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_crossref_citationtrail_10_1088_1538_3873_ab213d

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_crossref_citationtrail_10_1088_1538_3873_ab213d

Other Identifiers

ISSN

0004-6280

E-ISSN

1538-3873

DOI

10.1088/1538-3873/ab213d

How to access this item