Log in to save to my catalogue

QPSO-AHES-RC: a hybrid learning model for short-term traffic flow prediction

QPSO-AHES-RC: a hybrid learning model for short-term traffic flow prediction

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_crossref_primary_10_1007_s00500_023_08291_w

QPSO-AHES-RC: a hybrid learning model for short-term traffic flow prediction

About this item

Full title

QPSO-AHES-RC: a hybrid learning model for short-term traffic flow prediction

Publisher

Berlin/Heidelberg: Springer Berlin Heidelberg

Journal title

Soft computing (Berlin, Germany), 2023-07, Vol.27 (14), p.9347-9366

Language

English

Formats

Publication information

Publisher

Berlin/Heidelberg: Springer Berlin Heidelberg

More information

Scope and Contents

Contents

Accurate assessment of road conditions can effectively alleviate traffic congestion and guide people’s travel plans, traffic control decisions of transportation departments, and formulation of traffic-related laws and regulations. This paper proposes a quantum particle swarm optimization (QPSO) and adaptive hybrid exponential smoothing with residua...

Alternative Titles

Full title

QPSO-AHES-RC: a hybrid learning model for short-term traffic flow prediction

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_crossref_primary_10_1007_s00500_023_08291_w

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_crossref_primary_10_1007_s00500_023_08291_w

Other Identifiers

ISSN

1432-7643

E-ISSN

1433-7479

DOI

10.1007/s00500-023-08291-w

How to access this item