Log in to save to my catalogue

Machine Learning for New Physics Searches in B → K 0 µ + µ − Decays

Machine Learning for New Physics Searches in B → K 0 µ + µ − Decays

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_crossref_primary_10_1051_epjconf_202429509024

Machine Learning for New Physics Searches in B → K 0 µ + µ − Decays

About this item

Full title

Machine Learning for New Physics Searches in B → K 0 µ + µ − Decays

Journal title

EPJ Web of conferences, 2024, Vol.295, p.9024

Language

English

Formats

More information

Scope and Contents

Contents

We report the status of a neural network regression model trained to extract new physics (NP) parameters in Monte Carlo (MC) simulation data. We utilize a new EvtGen NP MC generator to generate
B → K*
0
µ
+
µ

events according to the deviation of the Wilson Coefficient
C
9
from its SM value, δ
C
9
. We train...

Alternative Titles

Full title

Machine Learning for New Physics Searches in B → K 0 µ + µ − Decays

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_crossref_primary_10_1051_epjconf_202429509024

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_crossref_primary_10_1051_epjconf_202429509024

Other Identifiers

ISSN

2100-014X

E-ISSN

2100-014X

DOI

10.1051/epjconf/202429509024

How to access this item