Log in to save to my catalogue

Machine learning-based compression of quantum many body physics: PCA and autoencoder representation...

Machine learning-based compression of quantum many body physics: PCA and autoencoder representation...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_crossref_primary_10_1088_2632_2153_ad9f20

Machine learning-based compression of quantum many body physics: PCA and autoencoder representation of the vertex function

About this item

Full title

Machine learning-based compression of quantum many body physics: PCA and autoencoder representation of the vertex function

Publisher

Bristol: IOP Publishing

Journal title

Machine learning: science and technology, 2024-12, Vol.5 (4), p.45076

Language

English

Formats

Publication information

Publisher

Bristol: IOP Publishing

More information

Scope and Contents

Contents

Theoretical approaches to quantum many-body physics require developing compact representations of the complexity of generic quantum states. This paper explores an interpretable data-driven approach utilizing principal component analysis (PCA) and
autoencoder
neural networks to compress the two-particle vertex, a key element in Feynman diagram...

Alternative Titles

Full title

Machine learning-based compression of quantum many body physics: PCA and autoencoder representation of the vertex function

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_crossref_primary_10_1088_2632_2153_ad9f20

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_crossref_primary_10_1088_2632_2153_ad9f20

Other Identifiers

ISSN

2632-2153

E-ISSN

2632-2153

DOI

10.1088/2632-2153/ad9f20

How to access this item