Log in to save to my catalogue

Hourly pollutants forecasting using a deep learning approach to obtain the AQI

Hourly pollutants forecasting using a deep learning approach to obtain the AQI

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_crossref_primary_10_1093_jigpal_jzac035

Hourly pollutants forecasting using a deep learning approach to obtain the AQI

About this item

Full title

Hourly pollutants forecasting using a deep learning approach to obtain the AQI

Publisher

Oxford University Press

Journal title

Logic journal of the IGPL, 2023-07, Vol.31 (4), p.722-738

Language

English

Formats

Publication information

Publisher

Oxford University Press

More information

Scope and Contents

Contents

Abstract
The Air Quality Index (AQI) shows the state of air pollution in a unique and more understandable way. This work aims to forecast the AQI in Algeciras (Spain) 8 hours in advance. The AQI is calculated indirectly through the predicted concentrations of five pollutants (O3, NO2, CO, SO2 and PM10) to achieve this goal. Artificial neural net...

Alternative Titles

Full title

Hourly pollutants forecasting using a deep learning approach to obtain the AQI

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_crossref_primary_10_1093_jigpal_jzac035

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_crossref_primary_10_1093_jigpal_jzac035

Other Identifiers

ISSN

1367-0751

E-ISSN

1368-9894

DOI

10.1093/jigpal/jzac035

How to access this item