Log in to save to my catalogue

Topic Modeling in Embedding Spaces

Topic Modeling in Embedding Spaces

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_crossref_primary_10_1162_tacl_a_00325

Topic Modeling in Embedding Spaces

About this item

Full title

Topic Modeling in Embedding Spaces

Publisher

One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press

Journal title

Transactions of the Association for Computational Linguistics, 2020-01, Vol.8, p.439-453

Language

English

Formats

Publication information

Publisher

One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press

More information

Scope and Contents

Contents

Topic modeling analyzes documents to learn meaningful patterns of words. However, existing topic models fail to learn interpretable topics when working with large and heavy-tailed vocabularies. To this end, we develop the
(
), a generative model of documents that marries traditional topic models with word embeddings. More specifically, the

Alternative Titles

Full title

Topic Modeling in Embedding Spaces

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_crossref_primary_10_1162_tacl_a_00325

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_crossref_primary_10_1162_tacl_a_00325

Other Identifiers

ISSN

2307-387X

E-ISSN

2307-387X

DOI

10.1162/tacl_a_00325

How to access this item