Log in to save to my catalogue

Proximity algorithms for the $ {\mathit{L}}^{1}{\mathit{L}}^{2}/{\mathit{T}\mathit{V}}^{\mathit{\alp...

Proximity algorithms for the $ {\mathit{L}}^{1}{\mathit{L}}^{2}/{\mathit{T}\mathit{V}}^{\mathit{\alp...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_crossref_primary_10_3934_math_2024807

Proximity algorithms for the $ {\mathit{L}}^{1}{\mathit{L}}^{2}/{\mathit{T}\mathit{V}}^{\mathit{\alpha }} $ image denoising model

About this item

Full title

Proximity algorithms for the $ {\mathit{L}}^{1}{\mathit{L}}^{2}/{\mathit{T}\mathit{V}}^{\mathit{\alpha }} $ image denoising model

Journal title

AIMS mathematics, 2024, Vol.9 (6), p.16643-16665

Language

English

Formats

More information

Scope and Contents

Contents

Inspired by the ROF model and the $ {L}^{1}/TV $ image denoising model, we propose a combined model to remove Gaussian noise and salt-and-pepper noise simultaneously. This model combines the $ {L}^{1} $ -data fidelity term, $ {L}^{2} $ -data fidelity term and a fractional-order total variation regularization term, and is termed the $ {L}^{1}{L}^{2}...

Alternative Titles

Full title

Proximity algorithms for the $ {\mathit{L}}^{1}{\mathit{L}}^{2}/{\mathit{T}\mathit{V}}^{\mathit{\alpha }} $ image denoising model

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_crossref_primary_10_3934_math_2024807

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_crossref_primary_10_3934_math_2024807

Other Identifiers

ISSN

2473-6988

E-ISSN

2473-6988

DOI

10.3934/math.2024807

How to access this item