E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
About this item
Full title
Author / Creator
Publisher
London: Nature Publishing Group UK
Journal title
Language
English
Formats
Publication information
Publisher
London: Nature Publishing Group UK
Subjects
More information
Scope and Contents
Contents
This work presents Neural Equivariant Interatomic Potentials (NequIP), an E(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions and only act on scalars, NequIP employs E(3)-equivariant convo...
Alternative Titles
Full title
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
Authors, Artists and Contributors
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_doaj_primary_oai_doaj_org_article_00967ba51d9e4740b8ca005b21c889fc
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_00967ba51d9e4740b8ca005b21c889fc
Other Identifiers
ISSN
2041-1723
E-ISSN
2041-1723
DOI
10.1038/s41467-022-29939-5