Log in to save to my catalogue

E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials

E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_00967ba51d9e4740b8ca005b21c889fc

E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials

About this item

Full title

E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials

Publisher

London: Nature Publishing Group UK

Journal title

Nature communications, 2022-05, Vol.13 (1), p.2453-2453, Article 2453

Language

English

Formats

Publication information

Publisher

London: Nature Publishing Group UK

More information

Scope and Contents

Contents

This work presents Neural Equivariant Interatomic Potentials (NequIP), an E(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions and only act on scalars, NequIP employs E(3)-equivariant convo...

Alternative Titles

Full title

E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_doaj_primary_oai_doaj_org_article_00967ba51d9e4740b8ca005b21c889fc

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_00967ba51d9e4740b8ca005b21c889fc

Other Identifiers

ISSN

2041-1723

E-ISSN

2041-1723

DOI

10.1038/s41467-022-29939-5

How to access this item