Circulating proteins to predict COVID-19 severity
Circulating proteins to predict COVID-19 severity
About this item
Full title
Author / Creator
Su, Chen-Yang , Zhou, Sirui , Gonzalez-Kozlova, Edgar , Butler-Laporte, Guillaume , Brunet-Ratnasingham, Elsa , Nakanishi, Tomoko , Jeon, Wonseok , Morrison, David R. , Laurent, Laetitia , Afilalo, Jonathan , Afilalo, Marc , Henry, Danielle , Chen, Yiheng , Carrasco-Zanini, Julia , Farjoun, Yossi , Pietzner, Maik , Kimchi, Nofar , Afrasiabi, Zaman , Rezk, Nardin , Bouab, Meriem , Petitjean, Louis , Guzman, Charlotte , Xue, Xiaoqing , Tselios, Chris , Vulesevic, Branka , Adeleye, Olumide , Abdullah, Tala , Almamlouk, Noor , Moussa, Yara , DeLuca, Chantal , Duggan, Naomi , Schurr, Erwin , Brassard, Nathalie , Durand, Madeleine , Del Valle, Diane Marie , Thompson, Ryan , Cedillo, Mario A. , Schadt, Eric , Nie, Kai , Simons, Nicole W. , Mouskas, Konstantinos , Zaki, Nicolas , Patel, Manishkumar , Xie, Hui , Harris, Jocelyn , Marvin, Robert , Cheng, Esther , Tuballes, Kevin , Argueta, Kimberly , Scott, Ieisha , Greenwood, Celia M. T. , Paterson, Clare , Hinterberg, Michael A. , Langenberg, Claudia , Forgetta, Vincenzo , Pineau, Joelle , Mooser, Vincent , Marron, Thomas , Beckmann, Noam D. , Kim-schulze, Seunghee , Charney, Alexander W. , Gnjatic, Sacha , Kaufmann, Daniel E. , Merad, Miriam , Richards, J. Brent , Mount Sinai COVID-19 Biobank Team and The Mount Sinai COVID-19 Biobank Team
Publisher
London: Nature Publishing Group UK
Journal title
Language
English
Formats
Publication information
Publisher
London: Nature Publishing Group UK
Subjects
More information
Scope and Contents
Contents
Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict COVID-19 se...
Alternative Titles
Full title
Circulating proteins to predict COVID-19 severity
Authors, Artists and Contributors
Author / Creator
Zhou, Sirui
Gonzalez-Kozlova, Edgar
Butler-Laporte, Guillaume
Brunet-Ratnasingham, Elsa
Nakanishi, Tomoko
Jeon, Wonseok
Morrison, David R.
Laurent, Laetitia
Afilalo, Jonathan
Afilalo, Marc
Henry, Danielle
Chen, Yiheng
Carrasco-Zanini, Julia
Farjoun, Yossi
Pietzner, Maik
Kimchi, Nofar
Afrasiabi, Zaman
Rezk, Nardin
Bouab, Meriem
Petitjean, Louis
Guzman, Charlotte
Xue, Xiaoqing
Tselios, Chris
Vulesevic, Branka
Adeleye, Olumide
Abdullah, Tala
Almamlouk, Noor
Moussa, Yara
DeLuca, Chantal
Duggan, Naomi
Schurr, Erwin
Brassard, Nathalie
Durand, Madeleine
Del Valle, Diane Marie
Thompson, Ryan
Cedillo, Mario A.
Schadt, Eric
Nie, Kai
Simons, Nicole W.
Mouskas, Konstantinos
Zaki, Nicolas
Patel, Manishkumar
Xie, Hui
Harris, Jocelyn
Marvin, Robert
Cheng, Esther
Tuballes, Kevin
Argueta, Kimberly
Scott, Ieisha
Greenwood, Celia M. T.
Paterson, Clare
Hinterberg, Michael A.
Langenberg, Claudia
Forgetta, Vincenzo
Pineau, Joelle
Mooser, Vincent
Marron, Thomas
Beckmann, Noam D.
Kim-schulze, Seunghee
Charney, Alexander W.
Gnjatic, Sacha
Kaufmann, Daniel E.
Merad, Miriam
Richards, J. Brent
Mount Sinai COVID-19 Biobank Team
The Mount Sinai COVID-19 Biobank Team
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_doaj_primary_oai_doaj_org_article_01337ffce78741589c060c556f78383f
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_01337ffce78741589c060c556f78383f
Other Identifiers
ISSN
2045-2322
E-ISSN
2045-2322
DOI
10.1038/s41598-023-31850-y