Log in to save to my catalogue

Machine learning algorithms utilizing blood parameters enable early detection of immunethrombotic dy...

Machine learning algorithms utilizing blood parameters enable early detection of immunethrombotic dy...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_171ff92b67e740899a74410111557efa

Machine learning algorithms utilizing blood parameters enable early detection of immunethrombotic dysregulation in COVID‐19

About this item

Full title

Machine learning algorithms utilizing blood parameters enable early detection of immunethrombotic dysregulation in COVID‐19

Publisher

Heidelberg: John Wiley & Sons, Inc

Journal title

Clinical and translational medicine, 2021-09, Vol.11 (9), p.e523-n/a

Language

English

Formats

Publication information

Publisher

Heidelberg: John Wiley & Sons, Inc

More information

Scope and Contents

Contents

From a more pragmatic perspective, the early detection of patients who may experience rapid clinical deterioration will enable prompt interventions and avert disease progression.1 T cell exhaustion, immunothrombotic dysregulation, as well as complement-associated microvascular injury are considered as the hallmarks of disease severity in COVID-19.2...

Alternative Titles

Full title

Machine learning algorithms utilizing blood parameters enable early detection of immunethrombotic dysregulation in COVID‐19

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_doaj_primary_oai_doaj_org_article_171ff92b67e740899a74410111557efa

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_171ff92b67e740899a74410111557efa

Other Identifiers

ISSN

2001-1326

E-ISSN

2001-1326

DOI

10.1002/ctm2.523

How to access this item