Log in to save to my catalogue

Improving Wishart Classification of Polarimetric SAR Data Using the Hopfield Neural Network Optimiza...

Improving Wishart Classification of Polarimetric SAR Data Using the Hopfield Neural Network Optimiza...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_1e9b36337dc54c768fbdcbe5b8b0f991

Improving Wishart Classification of Polarimetric SAR Data Using the Hopfield Neural Network Optimization Approach

About this item

Full title

Improving Wishart Classification of Polarimetric SAR Data Using the Hopfield Neural Network Optimization Approach

Publisher

Basel: MDPI AG

Journal title

Remote sensing (Basel, Switzerland), 2012-11, Vol.4 (11), p.3571-3595

Language

English

Formats

Publication information

Publisher

Basel: MDPI AG

More information

Scope and Contents

Contents

This paper proposes the optimization relaxation approach based on the analogue Hopfield Neural Network (HNN) for cluster refinement of pre-classified Polarimetric Synthetic Aperture Radar (PolSAR) image data. We consider the initial classification provided by the maximum-likelihood classifier based on the complex Wishart distribution, which is then...

Alternative Titles

Full title

Improving Wishart Classification of Polarimetric SAR Data Using the Hopfield Neural Network Optimization Approach

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_doaj_primary_oai_doaj_org_article_1e9b36337dc54c768fbdcbe5b8b0f991

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_1e9b36337dc54c768fbdcbe5b8b0f991

Other Identifiers

ISSN

2072-4292

E-ISSN

2072-4292

DOI

10.3390/rs4113571

How to access this item