Improving Wishart Classification of Polarimetric SAR Data Using the Hopfield Neural Network Optimiza...
Improving Wishart Classification of Polarimetric SAR Data Using the Hopfield Neural Network Optimization Approach
About this item
Full title
Author / Creator
Publisher
Basel: MDPI AG
Journal title
Language
English
Formats
Publication information
Publisher
Basel: MDPI AG
Subjects
More information
Scope and Contents
Contents
This paper proposes the optimization relaxation approach based on the analogue Hopfield Neural Network (HNN) for cluster refinement of pre-classified Polarimetric Synthetic Aperture Radar (PolSAR) image data. We consider the initial classification provided by the maximum-likelihood classifier based on the complex Wishart distribution, which is then...
Alternative Titles
Full title
Improving Wishart Classification of Polarimetric SAR Data Using the Hopfield Neural Network Optimization Approach
Authors, Artists and Contributors
Author / Creator
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_doaj_primary_oai_doaj_org_article_1e9b36337dc54c768fbdcbe5b8b0f991
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_1e9b36337dc54c768fbdcbe5b8b0f991
Other Identifiers
ISSN
2072-4292
E-ISSN
2072-4292
DOI
10.3390/rs4113571