Log in to save to my catalogue

FastMLST: A Multi-core Tool for Multilocus Sequence Typing of Draft Genome Assemblies

FastMLST: A Multi-core Tool for Multilocus Sequence Typing of Draft Genome Assemblies

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_44190e03916f474aad18fbbbf3b7c4f8

FastMLST: A Multi-core Tool for Multilocus Sequence Typing of Draft Genome Assemblies

About this item

Full title

FastMLST: A Multi-core Tool for Multilocus Sequence Typing of Draft Genome Assemblies

Publisher

London, England: SAGE Publications

Journal title

Bioinformatics and biology insights, 2021-11, Vol.15, p.11779322211059238-11779322211059238

Language

English

Formats

Publication information

Publisher

London, England: SAGE Publications

More information

Scope and Contents

Contents

Multilocus Sequence Typing (MLST) is a precise microbial typing approach at the intra-species level for epidemiologic and evolutionary purposes. It operates by assigning a sequence type (ST) identifier to each specimen, based on a combination of alleles of multiple housekeeping genes included in a defined scheme. The use of MLST has multiplied due to the availability of large numbers of genomic sequences and epidemiologic data in public repositories. However, data processing speed has become problematic due to the massive size of modern datasets. Here, we present FastMLST, a tool that is designed to perform PubMLST searches using BLASTn and a divide-and-conquer approach that processes each genome assembly in parallel. The output offered by FastMLST includes a table with the ST, allelic profile, and clonal complex or clade (when available), detected for a query, as well as a multi-FASTA file or a series of FASTA files with the concatenated or single allele sequences detected, respectively. FastMLST was validated with 91 different species, with a wide range of guanine-cytosine content (%GC), genome sizes, and fragmentation levels, and a speed test was performed on 3 datasets with varying genome sizes. Compared with other tools such as mlst, CGE/MLST, MLSTar, and PubMLST, FastMLST takes advantage of multiple processors to simultaneously type up to 28 000 genomes in less than 10 minutes, reducing processing times by at least 3-fold with 100% concordance to PubMLST, if contaminated genomes are excluded from the analysis. The source code, installation instructions, and documentation of FastMLST are available at https://github.com/EnzoAndree/FastMLST...

Alternative Titles

Full title

FastMLST: A Multi-core Tool for Multilocus Sequence Typing of Draft Genome Assemblies

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_doaj_primary_oai_doaj_org_article_44190e03916f474aad18fbbbf3b7c4f8

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_44190e03916f474aad18fbbbf3b7c4f8

Other Identifiers

ISSN

1177-9322

E-ISSN

1177-9322

DOI

10.1177/11779322211059238

How to access this item