Log in to save to my catalogue

Predicting motor insurance claims using telematics data-XGBoost versus logistic regression

Predicting motor insurance claims using telematics data-XGBoost versus logistic regression

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_4f5a91495f6144e3ad6c1bad55f08c3c

Predicting motor insurance claims using telematics data-XGBoost versus logistic regression

About this item

Full title

Predicting motor insurance claims using telematics data-XGBoost versus logistic regression

Publisher

Basel: MDPI

Journal title

Risks (Basel), 2019-06, Vol.7 (2), p.1-16

Language

English

Formats

Publication information

Publisher

Basel: MDPI

More information

Scope and Contents

Contents

XGBoost is recognized as an algorithm with exceptional predictive capacity. Models for a binary response indicating the existence of accident claims versus no claims can be used to identify the determinants of traffic accidents. This study compared the relative performances of logistic regression and XGBoost approaches for predicting the existence...

Alternative Titles

Full title

Predicting motor insurance claims using telematics data-XGBoost versus logistic regression

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_doaj_primary_oai_doaj_org_article_4f5a91495f6144e3ad6c1bad55f08c3c

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_4f5a91495f6144e3ad6c1bad55f08c3c

Other Identifiers

ISSN

2227-9091

E-ISSN

2227-9091

DOI

10.3390/risks7020070

How to access this item