APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial misse...
APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants
About this item
Full title
Author / Creator
Bianco, Salvatore Daniele , Parca, Luca , Petrizzelli, Francesco , Biagini, Tommaso , Giovannetti, Agnese , Liorni, Niccolò , Napoli, Alessandro , Carella, Massimo , Procaccio, Vincent , Lott, Marie T. , Zhang, Shiping , Vescovi, Angelo Luigi , Wallace, Douglas C. , Caputo, Viviana and Mazza, Tommaso
Publisher
London: Nature Publishing Group UK
Journal title
Language
English
Formats
Publication information
Publisher
London: Nature Publishing Group UK
Subjects
More information
Scope and Contents
Contents
Mitochondrial dysfunction has pleiotropic effects and is frequently caused by mitochondrial DNA mutations. However, factors such as significant variability in clinical manifestations make interpreting the pathogenicity of variants in the mitochondrial genome challenging. Here, we present APOGEE 2, a mitochondrially-centered ensemble method designed...
Alternative Titles
Full title
APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants
Authors, Artists and Contributors
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_doaj_primary_oai_doaj_org_article_64f1c2068b1f4c58ae29cd7b9a674f0e
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_64f1c2068b1f4c58ae29cd7b9a674f0e
Other Identifiers
ISSN
2041-1723
E-ISSN
2041-1723
DOI
10.1038/s41467-023-40797-7