Interpreting biologically informed neural networks for enhanced proteomic biomarker discovery and pa...
Interpreting biologically informed neural networks for enhanced proteomic biomarker discovery and pathway analysis
About this item
Full title
Author / Creator
Hartman, Erik , Scott, Aaron M. , Karlsson, Christofer , Mohanty, Tirthankar , Vaara, Suvi T. , Linder, Adam , Malmström, Lars , Malmström, Johan , LTH profilområde: Teknik för hälsa , Sektion III , Section II , epIgG , LTH Profile Area: Engineering Health , Translational Sepsis research , Thoraxkirurgi , Lunds Tekniska Högskola , Department of Clinical Sciences, Lund , Faculty of Engineering, LTH , Lund University , Translationell Sepsisforskning , Sektion V , Section V , Infektionsmedicin , Heparin bindning protein in cardiothoracic surgery , Faculty of Medicine , Medicinska fakulteten , Thoracic Surgery , Mass Spectrometry , Sektion II , BioMS , Institutionen för kliniska vetenskaper, Lund , Lunds universitet , Masspektrometri , LTH Profile areas , LTH profilområden , Section III , Infection Medicine (BMC) , Infection Medicine Proteomics , Heparinbindande protein inom thoraxkirurgi and SEBRA Sepsis and Bacterial Resistance Alliance
Publisher
London: Nature Publishing Group UK
Journal title
Language
English
Formats
Publication information
Publisher
London: Nature Publishing Group UK
Subjects
More information
Scope and Contents
Contents
The incorporation of machine learning methods into proteomics workflows improves the identification of disease-relevant biomarkers and biological pathways. However, machine learning models, such as deep neural networks, typically suffer from lack of interpretability. Here, we present a deep learning approach to combine biological pathway analysis and biomarker identification to increase the interpretability of proteomics experiments. Our approach integrates a priori knowledge of the relationships between proteins and biological pathways and biological processes into sparse neural networks to create biologically informed neural networks. We employ these networks to differentiate between clinical subphenotypes of septic acute kidney injury and COVID-19, as well as acute respiratory distress syndrome of different aetiologies. To gain biological insight into the complex syndromes, we utilize feature attribution-methods to introspect the networks for the identification of proteins and pathways important for distinguishing between subtypes. The algorithms are implemented in a freely available open source Python-package (
https://github.com/InfectionMedicineProteomics/BINN
).
Deep neural networks hold significant promise in capturing the complexity of biological systems. However, they suffer from a lack of interpretability. Here, authors present a generalizable method for developing, interpreting, and visualizing biologically informed neural networks for proteomics data....
Alternative Titles
Full title
Interpreting biologically informed neural networks for enhanced proteomic biomarker discovery and pathway analysis
Authors, Artists and Contributors
Author / Creator
Scott, Aaron M.
Karlsson, Christofer
Mohanty, Tirthankar
Vaara, Suvi T.
Linder, Adam
Malmström, Lars
Malmström, Johan
LTH profilområde: Teknik för hälsa
Sektion III
Section II
epIgG
LTH Profile Area: Engineering Health
Translational Sepsis research
Thoraxkirurgi
Lunds Tekniska Högskola
Department of Clinical Sciences, Lund
Faculty of Engineering, LTH
Lund University
Translationell Sepsisforskning
Sektion V
Section V
Infektionsmedicin
Heparin bindning protein in cardiothoracic surgery
Faculty of Medicine
Medicinska fakulteten
Thoracic Surgery
Mass Spectrometry
Sektion II
BioMS
Institutionen för kliniska vetenskaper, Lund
Lunds universitet
Masspektrometri
LTH Profile areas
LTH profilområden
Section III
Infection Medicine (BMC)
Infection Medicine Proteomics
Heparinbindande protein inom thoraxkirurgi
SEBRA Sepsis and Bacterial Resistance Alliance
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_doaj_primary_oai_doaj_org_article_6ba2704448034c108462da0c1d21a25d
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_6ba2704448034c108462da0c1d21a25d
Other Identifiers
ISSN
2041-1723
E-ISSN
2041-1723
DOI
10.1038/s41467-023-41146-4