Log in to save to my catalogue

Ensuring Topological Data-Structure Preservation under Autoencoder Compression Due to Latent Space R...

Ensuring Topological Data-Structure Preservation under Autoencoder Compression Due to Latent Space R...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_7b0e9c2a7855429c89a565acb2ed510a

Ensuring Topological Data-Structure Preservation under Autoencoder Compression Due to Latent Space Regularization in Gauss–Legendre Nodes

About this item

Full title

Ensuring Topological Data-Structure Preservation under Autoencoder Compression Due to Latent Space Regularization in Gauss–Legendre Nodes

Publisher

Basel: MDPI AG

Journal title

Axioms, 2024-08, Vol.13 (8), p.535

Language

English

Formats

Publication information

Publisher

Basel: MDPI AG

More information

Scope and Contents

Contents

We formulate a data-independent latent space regularization constraint for general unsupervised autoencoders. The regularization relies on sampling the autoencoder Jacobian at Legendre nodes, which are the centers of the Gauss–Legendre quadrature. Revisiting this classic allows us to prove that regularized autoencoders ensure a one-to-one re-embedd...

Alternative Titles

Full title

Ensuring Topological Data-Structure Preservation under Autoencoder Compression Due to Latent Space Regularization in Gauss–Legendre Nodes

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_doaj_primary_oai_doaj_org_article_7b0e9c2a7855429c89a565acb2ed510a

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_7b0e9c2a7855429c89a565acb2ed510a

Other Identifiers

ISSN

2075-1680

E-ISSN

2075-1680

DOI

10.3390/axioms13080535

How to access this item