Interpretable machine learning for automated left ventricular scar quantification in hypertrophic ca...
Interpretable machine learning for automated left ventricular scar quantification in hypertrophic cardiomyopathy patients
About this item
Full title
Author / Creator
Publisher
United States: Public Library of Science
Journal title
Language
English
Formats
Publication information
Publisher
United States: Public Library of Science
Subjects
More information
Scope and Contents
Contents
Scar quantification on cardiovascular magnetic resonance (CMR) late gadolinium enhancement (LGE) images is important in risk stratifying patients with hypertrophic cardiomyopathy (HCM) due to the importance of scar burden in predicting clinical outcomes. We aimed to develop a machine learning (ML) model that contours left ventricular (LV) endo- and...
Alternative Titles
Full title
Interpretable machine learning for automated left ventricular scar quantification in hypertrophic cardiomyopathy patients
Authors, Artists and Contributors
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_doaj_primary_oai_doaj_org_article_7bdeae2d472f4e7484de1f803c5d25a7
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_7bdeae2d472f4e7484de1f803c5d25a7
Other Identifiers
ISSN
2767-3170
E-ISSN
2767-3170
DOI
10.1371/journal.pdig.0000159