Log in to save to my catalogue

Interpretable machine learning for automated left ventricular scar quantification in hypertrophic ca...

Interpretable machine learning for automated left ventricular scar quantification in hypertrophic ca...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_7bdeae2d472f4e7484de1f803c5d25a7

Interpretable machine learning for automated left ventricular scar quantification in hypertrophic cardiomyopathy patients

About this item

Full title

Interpretable machine learning for automated left ventricular scar quantification in hypertrophic cardiomyopathy patients

Publisher

United States: Public Library of Science

Journal title

PLOS digital health, 2023-01, Vol.2 (1), p.e0000159-e0000159

Language

English

Formats

Publication information

Publisher

United States: Public Library of Science

More information

Scope and Contents

Contents

Scar quantification on cardiovascular magnetic resonance (CMR) late gadolinium enhancement (LGE) images is important in risk stratifying patients with hypertrophic cardiomyopathy (HCM) due to the importance of scar burden in predicting clinical outcomes. We aimed to develop a machine learning (ML) model that contours left ventricular (LV) endo- and...

Alternative Titles

Full title

Interpretable machine learning for automated left ventricular scar quantification in hypertrophic cardiomyopathy patients

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_doaj_primary_oai_doaj_org_article_7bdeae2d472f4e7484de1f803c5d25a7

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_7bdeae2d472f4e7484de1f803c5d25a7

Other Identifiers

ISSN

2767-3170

E-ISSN

2767-3170

DOI

10.1371/journal.pdig.0000159

How to access this item