Deep learning searches for vector-like leptons at the LHC and electron/muon colliders
Deep learning searches for vector-like leptons at the LHC and electron/muon colliders
About this item
Full title
Author / Creator
Naturvetenskapliga fakulteten , Lund University , Department of Physics , Particle and nuclear physics , Faculty of Science , Lunds universitet , Fysiska institutionen , Partikel- och kärnfysik , Morais, António P. , Onofre, António , Freitas, Felipe F. , Gonçalves, João , Pasechnik, Roman and Santos, Rui
Publisher
Berlin/Heidelberg: Springer Berlin Heidelberg
Journal title
Language
English
Formats
Publication information
Publisher
Berlin/Heidelberg: Springer Berlin Heidelberg
Subjects
More information
Scope and Contents
Contents
The discovery potential of both singlet and doublet vector-like leptons (VLLs) at the Large Hadron Collider (LHC) as well as at the not-so-far future muon and electron machines is explored. The focus is on a single production channel for LHC direct searches while double production signatures are proposed for the leptonic colliders. A Deep Learning...
Alternative Titles
Full title
Deep learning searches for vector-like leptons at the LHC and electron/muon colliders
Authors, Artists and Contributors
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_doaj_primary_oai_doaj_org_article_7f194ca4a3204f629ecd7159f480b89e
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_7f194ca4a3204f629ecd7159f480b89e
Other Identifiers
ISSN
1434-6052,1434-6044,1431-5858
E-ISSN
1434-6052
DOI
10.1140/epjc/s10052-023-11314-3