Optimization of snow-related parameters in the Noah land surface model (v3.4.1) using a micro-geneti...
Optimization of snow-related parameters in the Noah land surface model (v3.4.1) using a micro-genetic algorithm (v1.7a)
About this item
Full title
Author / Creator
Publisher
Katlenburg-Lindau: Copernicus GmbH
Journal title
Language
English
Formats
Publication information
Publisher
Katlenburg-Lindau: Copernicus GmbH
Subjects
More information
Scope and Contents
Contents
Snowfall prediction is important in winter and early spring because snowy conditions generate enormous economic damages. However, there is a lack of previous studies dealing with snow prediction, especially using land surface models (LSMs). Numerical weather prediction models directly interpret the snowfall events, whereas LSMs evaluate the snow co...
Alternative Titles
Full title
Optimization of snow-related parameters in the Noah land surface model (v3.4.1) using a micro-genetic algorithm (v1.7a)
Authors, Artists and Contributors
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_doaj_primary_oai_doaj_org_article_c27169e296a44e93bd5f7782207321e9
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_c27169e296a44e93bd5f7782207321e9
Other Identifiers
ISSN
1991-9603,1991-962X,1991-959X
E-ISSN
1991-9603,1991-962X
DOI
10.5194/gmd-15-8541-2022