Log in to save to my catalogue

Estimating Water Depth of Different Waterbodies Using Deep Learning Super Resolution from HJ-2 Satel...

Estimating Water Depth of Different Waterbodies Using Deep Learning Super Resolution from HJ-2 Satel...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_d042675850444e87ad52241e76c56a98

Estimating Water Depth of Different Waterbodies Using Deep Learning Super Resolution from HJ-2 Satellite Hyperspectral Images

About this item

Full title

Estimating Water Depth of Different Waterbodies Using Deep Learning Super Resolution from HJ-2 Satellite Hyperspectral Images

Publisher

Basel: MDPI AG

Journal title

Remote sensing (Basel, Switzerland), 2024-12, Vol.16 (23), p.4607

Language

English

Formats

Publication information

Publisher

Basel: MDPI AG

More information

Scope and Contents

Contents

Hyperspectral remote sensing images offer a unique opportunity to quickly monitor water depth, but how to utilize the enriched spectral information and improve its spatial resolution remains a challenge. We proposed a water depth estimation framework to improve spatial resolution using deep learning and four inversion methods and verified the effec...

Alternative Titles

Full title

Estimating Water Depth of Different Waterbodies Using Deep Learning Super Resolution from HJ-2 Satellite Hyperspectral Images

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_doaj_primary_oai_doaj_org_article_d042675850444e87ad52241e76c56a98

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_d042675850444e87ad52241e76c56a98

Other Identifiers

ISSN

2072-4292

E-ISSN

2072-4292

DOI

10.3390/rs16234607

How to access this item