Macaulay matrix for Feynman integrals: linear relations and intersection numbers
Macaulay matrix for Feynman integrals: linear relations and intersection numbers
About this item
Full title
Author / Creator
Publisher
Berlin/Heidelberg: Springer Berlin Heidelberg
Journal title
Language
English
Formats
Publication information
Publisher
Berlin/Heidelberg: Springer Berlin Heidelberg
Subjects
More information
Scope and Contents
Contents
A
bstract
We elaborate on the connection between Gel’fand-Kapranov-Zelevinsky systems, de Rham theory for twisted cohomology groups, and Pfaffian equations for Feynman Integrals. We propose a novel, more efficient algorithm to compute Macaulay matrices, which are used to derive Pfaffian systems of differential equations. The Pfaffian matrices...
Alternative Titles
Full title
Macaulay matrix for Feynman integrals: linear relations and intersection numbers
Authors, Artists and Contributors
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_doaj_primary_oai_doaj_org_article_d201303cac3e49469947e03d1188415c
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_d201303cac3e49469947e03d1188415c
Other Identifiers
ISSN
1029-8479
E-ISSN
1029-8479
DOI
10.1007/JHEP09(2022)187