Log in to save to my catalogue

Macaulay matrix for Feynman integrals: linear relations and intersection numbers

Macaulay matrix for Feynman integrals: linear relations and intersection numbers

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_d201303cac3e49469947e03d1188415c

Macaulay matrix for Feynman integrals: linear relations and intersection numbers

About this item

Full title

Macaulay matrix for Feynman integrals: linear relations and intersection numbers

Publisher

Berlin/Heidelberg: Springer Berlin Heidelberg

Journal title

The journal of high energy physics, 2022-09, Vol.2022 (9), p.187-57, Article 187

Language

English

Formats

Publication information

Publisher

Berlin/Heidelberg: Springer Berlin Heidelberg

More information

Scope and Contents

Contents

A
bstract
We elaborate on the connection between Gel’fand-Kapranov-Zelevinsky systems, de Rham theory for twisted cohomology groups, and Pfaffian equations for Feynman Integrals. We propose a novel, more efficient algorithm to compute Macaulay matrices, which are used to derive Pfaffian systems of differential equations. The Pfaffian matrices...

Alternative Titles

Full title

Macaulay matrix for Feynman integrals: linear relations and intersection numbers

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_doaj_primary_oai_doaj_org_article_d201303cac3e49469947e03d1188415c

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_d201303cac3e49469947e03d1188415c

Other Identifiers

ISSN

1029-8479

E-ISSN

1029-8479

DOI

10.1007/JHEP09(2022)187

How to access this item