Optimal Cut-off Thresholds of LGE Extent to Predict All-cause Death Using Machine-learning in a Larg...
Optimal Cut-off Thresholds of LGE Extent to Predict All-cause Death Using Machine-learning in a Large Cohort of ICM Patients Optimal Cut-off Thresholds of LGE Extent to Predict All-cause Death Using Machine-learning in a Large Cohort of ICM Patients
About this item
Full title
Author / Creator
Alexandre Unger, MSc , Solenn Toupin, PhD , Theo Pezel, MD , Thierry Unterseeh, MD , Thomas Hovasse, MD , Stéphane Champagne, MD, PhD , Tania Ah-Sing, MD , Lounis Hamzi, MD , Trecy Gonçalves, MD , Jean Guillaume Dillinger, MD, PhD , Patrick Henry, MD, PhD , Valérie Bousson, MD, PhD , Francesca Sanguineti, MD , Philippe Garot, MD and Jérome Garot, MD, PhD
Publisher
Elsevier
Journal title
Language
English
Formats
Publication information
Publisher
Elsevier
More information
Alternative Titles
Full title
Optimal Cut-off Thresholds of LGE Extent to Predict All-cause Death Using Machine-learning in a Large Cohort of ICM Patients Optimal Cut-off Thresholds of LGE Extent to Predict All-cause Death Using Machine-learning in a Large Cohort of ICM Patients
Authors, Artists and Contributors
Author / Creator
Solenn Toupin, PhD
Theo Pezel, MD
Thierry Unterseeh, MD
Thomas Hovasse, MD
Stéphane Champagne, MD, PhD
Tania Ah-Sing, MD
Lounis Hamzi, MD
Trecy Gonçalves, MD
Jean Guillaume Dillinger, MD, PhD
Patrick Henry, MD, PhD
Valérie Bousson, MD, PhD
Francesca Sanguineti, MD
Philippe Garot, MD
Jérome Garot, MD, PhD
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_doaj_primary_oai_doaj_org_article_d5d534d4b12d4e39ae02add74eb78496
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_d5d534d4b12d4e39ae02add74eb78496
Other Identifiers
ISSN
1097-6647