Log in to save to my catalogue

Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Featu...

Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Featu...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_e04b38331f9e4881ab258bb486b4d10f

Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features

About this item

Full title

Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features

Publisher

Basel: MDPI AG

Journal title

Energies (Basel), 2019-11, Vol.12 (22), p.4366

Language

English

Formats

Publication information

Publisher

Basel: MDPI AG

More information

Scope and Contents

Contents

Online accurate estimation of remaining useful life (RUL) of lithium-ion batteries is a necessary feature of any smart battery management system (BMS). In this paper, a novel partial discharge data (PDD)-based support vector machine (SVM) model is proposed for RUL prediction. The proposed algorithm extracts the critical features from the voltage an...

Alternative Titles

Full title

Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_doaj_primary_oai_doaj_org_article_e04b38331f9e4881ab258bb486b4d10f

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_e04b38331f9e4881ab258bb486b4d10f

Other Identifiers

ISSN

1996-1073

E-ISSN

1996-1073

DOI

10.3390/en12224366

How to access this item