Log in to save to my catalogue

Universal fragment descriptors for predicting properties of inorganic crystals

Universal fragment descriptors for predicting properties of inorganic crystals

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_e51aabf9bad84fe6a8a7bf233cac04c5

Universal fragment descriptors for predicting properties of inorganic crystals

About this item

Full title

Universal fragment descriptors for predicting properties of inorganic crystals

Publisher

London: Nature Publishing Group UK

Journal title

Nature communications, 2017-06, Vol.8 (1), p.15679-12, Article 15679

Language

English

Formats

Publication information

Publisher

London: Nature Publishing Group UK

More information

Scope and Contents

Contents

Although historically materials discovery has been driven by a laborious trial-and-error process, knowledge-driven materials design can now be enabled by the rational combination of Machine Learning methods and materials databases. Here, data from the AFLOW repository for
ab initio
calculations is combined with Quantitative Materials Structur...

Alternative Titles

Full title

Universal fragment descriptors for predicting properties of inorganic crystals

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_doaj_primary_oai_doaj_org_article_e51aabf9bad84fe6a8a7bf233cac04c5

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_e51aabf9bad84fe6a8a7bf233cac04c5

Other Identifiers

ISSN

2041-1723

E-ISSN

2041-1723

DOI

10.1038/ncomms15679

How to access this item