EFNet: estimation of left ventricular ejection fraction from cardiac ultrasound videos using deep le...
EFNet: estimation of left ventricular ejection fraction from cardiac ultrasound videos using deep learning
About this item
Full title
Author / Creator
Publisher
United States: PeerJ. Ltd
Journal title
Language
English
Formats
Publication information
Publisher
United States: PeerJ. Ltd
Subjects
More information
Scope and Contents
Contents
The ejection fraction (EF) is a vital metric for assessing cardiovascular function through cardiac ultrasound. Manual evaluation is time-consuming and exhibits high variability among observers. Deep-learning techniques offer precise and autonomous EF predictions, yet these methods often lack explainability. Accurate heart failure prediction using c...
Alternative Titles
Full title
EFNet: estimation of left ventricular ejection fraction from cardiac ultrasound videos using deep learning
Authors, Artists and Contributors
Author / Creator
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_doaj_primary_oai_doaj_org_article_f5cf8b74a1ff4accaf25bd7990e91552
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_f5cf8b74a1ff4accaf25bd7990e91552
Other Identifiers
ISSN
2376-5992
E-ISSN
2376-5992
DOI
10.7717/peerj-cs.2506