Log in to save to my catalogue

EFNet: estimation of left ventricular ejection fraction from cardiac ultrasound videos using deep le...

EFNet: estimation of left ventricular ejection fraction from cardiac ultrasound videos using deep le...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_f5cf8b74a1ff4accaf25bd7990e91552

EFNet: estimation of left ventricular ejection fraction from cardiac ultrasound videos using deep learning

About this item

Full title

EFNet: estimation of left ventricular ejection fraction from cardiac ultrasound videos using deep learning

Publisher

United States: PeerJ. Ltd

Journal title

PeerJ. Computer science, 2025-01, Vol.11, p.e2506, Article e2506

Language

English

Formats

Publication information

Publisher

United States: PeerJ. Ltd

More information

Scope and Contents

Contents

The ejection fraction (EF) is a vital metric for assessing cardiovascular function through cardiac ultrasound. Manual evaluation is time-consuming and exhibits high variability among observers. Deep-learning techniques offer precise and autonomous EF predictions, yet these methods often lack explainability. Accurate heart failure prediction using c...

Alternative Titles

Full title

EFNet: estimation of left ventricular ejection fraction from cardiac ultrasound videos using deep learning

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_doaj_primary_oai_doaj_org_article_f5cf8b74a1ff4accaf25bd7990e91552

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_f5cf8b74a1ff4accaf25bd7990e91552

Other Identifiers

ISSN

2376-5992

E-ISSN

2376-5992

DOI

10.7717/peerj-cs.2506

How to access this item