Log in to save to my catalogue

Calibration: the Achilles heel of predictive analytics

Calibration: the Achilles heel of predictive analytics

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_f90c9ca4d5f241beb6b581925ee652cf

Calibration: the Achilles heel of predictive analytics

About this item

Full title

Calibration: the Achilles heel of predictive analytics

Publisher

England: BioMed Central Ltd

Journal title

BMC medicine, 2019-12, Vol.17 (1), p.230-230, Article 230

Language

English

Formats

Publication information

Publisher

England: BioMed Central Ltd

More information

Scope and Contents

Contents

The assessment of calibration performance of risk prediction models based on regression or more flexible machine learning algorithms receives little attention.
Herein, we argue that this needs to change immediately because poorly calibrated algorithms can be misleading and potentially harmful for clinical decision-making. We summarize how to avo...

Alternative Titles

Full title

Calibration: the Achilles heel of predictive analytics

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_doaj_primary_oai_doaj_org_article_f90c9ca4d5f241beb6b581925ee652cf

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_f90c9ca4d5f241beb6b581925ee652cf

Other Identifiers

ISSN

1741-7015

E-ISSN

1741-7015

DOI

10.1186/s12916-019-1466-7

How to access this item