PASNet: pathway-associated sparse deep neural network for prognosis prediction from high-throughput...
PASNet: pathway-associated sparse deep neural network for prognosis prediction from high-throughput data
About this item
Full title
Author / Creator
Publisher
England: BioMed Central Ltd
Journal title
Language
English
Formats
Publication information
Publisher
England: BioMed Central Ltd
Subjects
More information
Scope and Contents
Contents
Predicting prognosis in patients from large-scale genomic data is a fundamentally challenging problem in genomic medicine. However, the prognosis still remains poor in many diseases. The poor prognosis may be caused by high complexity of biological systems, where multiple biological components and their hierarchical relationships are involved. Moreover, it is challenging to develop robust computational solutions with high-dimension, low-sample size data.
In this study, we propose a Pathway-Associated Sparse Deep Neural Network (PASNet) that not only predicts patients' prognoses but also describes complex biological processes regarding biological pathways for prognosis. PASNet models a multilayered, hierarchical biological system of genes and pathways to predict clinical outcomes by leveraging deep learning. The sparse solution of PASNet provides the capability of model interpretability that most conventional fully-connected neural networks lack. We applied PASNet for long-term survival prediction in Glioblastoma multiforme (GBM), which is a primary brain cancer that shows poor prognostic performance. The predictive performance of PASNet was evaluated with multiple cross-validation experiments. PASNet showed a higher Area Under the Curve (AUC) and F1-score than previous long-term survival prediction classifiers, and the significance of PASNet's performance was assessed by Wilcoxon signed-rank test. Furthermore, the biological pathways, found in PASNet, were referred to as significant pathways in GBM in previous biology and medicine research.
PASNet can describe the different biological systems of clinical outcomes for prognostic prediction as well as predicting prognosis more accurately than the current state-of-the-art methods. PASNet is the first pathway-based deep neural network that represents hierarchical representations of genes and pathways and their nonlinear effects, to the best of our knowledge. Additionally, PASNet would be promising due to its flexible model representation and interpretability, embodying the strengths of deep learning. The open-source code of PASNet is available at https://github.com/DataX-JieHao/PASNet ....
Alternative Titles
Full title
PASNet: pathway-associated sparse deep neural network for prognosis prediction from high-throughput data
Authors, Artists and Contributors
Author / Creator
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_doaj_primary_oai_doaj_org_article_fc9629e932e245d3a96f6bbf93462de0
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_fc9629e932e245d3a96f6bbf93462de0
Other Identifiers
ISSN
1471-2105
E-ISSN
1471-2105
DOI
10.1186/s12859-018-2500-z