Log in to save to my catalogue

Classification of Möbius minimal and Möbius isotropic hypersurfaces in S5

Classification of Möbius minimal and Möbius isotropic hypersurfaces in S5

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_fcf77c5889af43a6aa7bc265caa9499d

Classification of Möbius minimal and Möbius isotropic hypersurfaces in S5

About this item

Full title

Classification of Möbius minimal and Möbius isotropic hypersurfaces in S5

Author / Creator

Publisher

AIMS Press

Journal title

AIMS mathematics, 2021-06, Vol.6 (8), p.8426-8452

Language

English

Formats

Publication information

Publisher

AIMS Press

More information

Scope and Contents

Contents

In this paper, we will prove that a closed Möbius minimal and Möbius isotropic hypersurface without umbilic points in the unit sphere $ \mathbb{S}^{5} $ is Möbius equivalent to either the torus $ \mathbb{S}^{2}(\frac{1}{\sqrt{2}})\times\mathbb{S}^{2}(\frac{1}{\sqrt{2}})\rightarrow \mathbb{S}^{5} $ or the Cartan minimal hypersurface in $ \mathbb{S}^...

Alternative Titles

Full title

Classification of Möbius minimal and Möbius isotropic hypersurfaces in S5

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_doaj_primary_oai_doaj_org_article_fcf77c5889af43a6aa7bc265caa9499d

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_fcf77c5889af43a6aa7bc265caa9499d

Other Identifiers

E-ISSN

2473-6988

DOI

10.3934/math.2021489

How to access this item