Classification of Möbius minimal and Möbius isotropic hypersurfaces in S5
Classification of Möbius minimal and Möbius isotropic hypersurfaces in S5
About this item
Full title
Author / Creator
Publisher
AIMS Press
Journal title
Language
English
Formats
Publication information
Publisher
AIMS Press
Subjects
More information
Scope and Contents
Contents
In this paper, we will prove that a closed Möbius minimal and Möbius isotropic hypersurface without umbilic points in the unit sphere $ \mathbb{S}^{5} $ is Möbius equivalent to either the torus $ \mathbb{S}^{2}(\frac{1}{\sqrt{2}})\times\mathbb{S}^{2}(\frac{1}{\sqrt{2}})\rightarrow \mathbb{S}^{5} $ or the Cartan minimal hypersurface in $ \mathbb{S}^...
Alternative Titles
Full title
Classification of Möbius minimal and Möbius isotropic hypersurfaces in S5
Authors, Artists and Contributors
Author / Creator
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_doaj_primary_oai_doaj_org_article_fcf77c5889af43a6aa7bc265caa9499d
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_fcf77c5889af43a6aa7bc265caa9499d
Other Identifiers
E-ISSN
2473-6988
DOI
10.3934/math.2021489