Log in to save to my catalogue

An ensemble method for estimating the number of clusters in a big data set using multiple random sam...

An ensemble method for estimating the number of clusters in a big data set using multiple random sam...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_fd86b4da6db542a487c3aef204d0855b

An ensemble method for estimating the number of clusters in a big data set using multiple random samples

About this item

Full title

An ensemble method for estimating the number of clusters in a big data set using multiple random samples

Publisher

Cham: Springer International Publishing

Journal title

Journal of Big Data, 2023-04, Vol.10 (1), p.40-33, Article 40

Language

English

Formats

Publication information

Publisher

Cham: Springer International Publishing

More information

Scope and Contents

Contents

Clustering a big dataset without knowing the number of clusters presents a big challenge to many existing clustering algorithms. In this paper, we propose a Random Sample Partition-based Centers Ensemble (RSPCE) algorithm to identify the number of clusters in a big dataset. In this algorithm, a set of disjoint random samples is selected from the bi...

Alternative Titles

Full title

An ensemble method for estimating the number of clusters in a big data set using multiple random samples

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_doaj_primary_oai_doaj_org_article_fd86b4da6db542a487c3aef204d0855b

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_doaj_primary_oai_doaj_org_article_fd86b4da6db542a487c3aef204d0855b

Other Identifiers

ISSN

2196-1115

E-ISSN

2196-1115

DOI

10.1186/s40537-023-00709-4

How to access this item