A novel feature extraction method based on dynamic handwriting for Parkinson's disease detection
A novel feature extraction method based on dynamic handwriting for Parkinson's disease detection
About this item
Full title
Author / Creator
Lu, Huimin , Qi, Guolian , Wu, Dalong , Lin, Chenglin , Ma, Songzhe , Shi, Yingqi and Xue, Han
Publisher
United States: Public Library of Science
Journal title
Language
English
Formats
Publication information
Publisher
United States: Public Library of Science
Subjects
More information
Scope and Contents
Contents
Parkinson's disease (PD) is a common disease of the elderly. Given the easy accessibility of handwriting samples, many researchers have proposed handwriting-based detection methods for Parkinson's disease. Extracting more discriminative features from handwriting is an important step. Although many features have been proposed in previous researches, the insight analysis of the combination of handwriting's kinematic, pressure, and angle dynamic features is lacking. Moreover, most existing feature is incompletely represented, with feature information lost. Therefore, to solve the above problems, a new feature extraction approach for PD detection is proposed using handwriting. First, built on the kinematic, pressure, and angle dynamic features, we propose a moment feature by composed these three types of features, an overall representation of these three types of features information. Then, we proposed a feature extraction method to extract time-frequency-based statistical (TF-ST) features from dynamic handwriting features in terms of their temporal and frequency characteristics. Finally, we proposed an escape Coati Optimization Algorithm (eCOA) for global optimization to enhance classification performance. Self-constructed and public datasets are used to verify the proposed method's effectiveness respectively. The experimental results showed an accuracy of 97.95% and 98.67%, a sensitivity of 98.15% (average) and 97.78%, a specificity of 99.17% (average) and 100%, and an AUC of 98.66% (average) and 98.89%. The code is available at https://github.com/dreamhcy/MLforPD....
Alternative Titles
Full title
A novel feature extraction method based on dynamic handwriting for Parkinson's disease detection
Authors, Artists and Contributors
Author / Creator
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_plos_journals_3159629655
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_plos_journals_3159629655
Other Identifiers
ISSN
1932-6203
E-ISSN
1932-6203
DOI
10.1371/journal.pone.0318021