Log in to save to my catalogue

INDEPENDENT COMPONENT ANALYSIS VIA NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION

INDEPENDENT COMPONENT ANALYSIS VIA NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1360332190

INDEPENDENT COMPONENT ANALYSIS VIA NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION

About this item

Full title

INDEPENDENT COMPONENT ANALYSIS VIA NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION

Publisher

Hayward: Institute of Mathematical Statistics

Journal title

The Annals of statistics, 2012-12, Vol.40 (6), p.2973-3002

Language

English

Formats

Publication information

Publisher

Hayward: Institute of Mathematical Statistics

More information

Scope and Contents

Contents

Independent Component Analysis (ICA) models are very popular semiparametric models in which we observe independent copies of a random vector X = AS, where A is a non-singular matrix and S has independent components. We propose a new way of estimating the unmixing matrix W = A⁻¹ and the marginal distributions of the components of S using nonparametr...

Alternative Titles

Full title

INDEPENDENT COMPONENT ANALYSIS VIA NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1360332190

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1360332190

Other Identifiers

ISSN

0090-5364

E-ISSN

2168-8966

DOI

10.1214/12-AOS1060

How to access this item