Log in to save to my catalogue

Variational estimators for the parameters of Gibbs point process models

Variational estimators for the parameters of Gibbs point process models

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1372251147

Variational estimators for the parameters of Gibbs point process models

About this item

Full title

Variational estimators for the parameters of Gibbs point process models

Publisher

International Statistical Institute and Bernoulli Society for Mathematical Statistics and Probability

Journal title

Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2013-08, Vol.19 (3), p.905-930

Language

English

Formats

Publication information

Publisher

International Statistical Institute and Bernoulli Society for Mathematical Statistics and Probability

More information

Scope and Contents

Contents

This paper proposes a new estimation technique for fitting parametric Gibbs point process models to a spatial point pattern dataset. The technique is a counterpart, for spatial point processes, of the variational estimators for Markov random fields developed by Almeida and Gidas. The estimator does not require the point process density to be heredi...

Alternative Titles

Full title

Variational estimators for the parameters of Gibbs point process models

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1372251147

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1372251147

Other Identifiers

ISSN

1350-7265

DOI

10.3150/12-BEJ419

How to access this item