Log in to save to my catalogue

Asymptotics for the First Passage Times of Lévy Processes and Random Walks

Asymptotics for the First Passage Times of Lévy Processes and Random Walks

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1363784425

Asymptotics for the First Passage Times of Lévy Processes and Random Walks

About this item

Full title

Asymptotics for the First Passage Times of Lévy Processes and Random Walks

Publisher

Cambridge, UK: Cambridge University Press

Journal title

Journal of applied probability, 2013-03, Vol.50 (1), p.64-84

Language

English

Formats

Publication information

Publisher

Cambridge, UK: Cambridge University Press

More information

Scope and Contents

Contents

We study the exact asymptotics for the distribution of the first time, τ
x
, a Lévy process X
t
crosses a fixed negative level -x. We prove that ℙ{τ
x
>t} ~V(x) ℙ{X
t
≥0}/t as t→∞ for a certain function V(x). Using known results for the large deviations of random walks, we obtain asymptotics for ℙ{τ
x
>t} explicitly in...

Alternative Titles

Full title

Asymptotics for the First Passage Times of Lévy Processes and Random Walks

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1363784425

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1363784425

Other Identifiers

ISSN

0021-9002

E-ISSN

1475-6072

DOI

10.1239/jap/1363784425

How to access this item