Log in to save to my catalogue

Empirical Benchmarks for Interpreting Effect Size Variability in Meta-Analysis

Empirical Benchmarks for Interpreting Effect Size Variability in Meta-Analysis

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_1933611985

Empirical Benchmarks for Interpreting Effect Size Variability in Meta-Analysis

About this item

Full title

Empirical Benchmarks for Interpreting Effect Size Variability in Meta-Analysis

Publisher

New York, USA: Cambridge University Press

Journal title

Industrial and organizational psychology, 2017-09, Vol.10 (3), p.472-479

Language

English

Formats

Publication information

Publisher

New York, USA: Cambridge University Press

More information

Scope and Contents

Contents

Generalization in meta-analyses is not a dichotomous decision (typically encountered in papers using the Q test for homogeneity, the 75% rule, or null hypothesis tests). Inattention to effect size variability in meta-analyses may stem from a lack of guidelines for interpreting credibility intervals. In this commentary, we describe two methods for m...

Alternative Titles

Full title

Empirical Benchmarks for Interpreting Effect Size Variability in Meta-Analysis

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_1933611985

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_1933611985

Other Identifiers

ISSN

1754-9426

E-ISSN

1754-9434

DOI

10.1017/iop.2017.44

How to access this item