Log in to save to my catalogue

Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA

Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2075398373

Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA

About this item

Full title

Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA

Publisher

Ithaca: Cornell University Library, arXiv.org

Journal title

arXiv.org, 2017-04

Language

English

Formats

Publication information

Publisher

Ithaca: Cornell University Library, arXiv.org

More information

Scope and Contents

Contents

We introduce a novel approach for estimating Latent Dirichlet Allocation (LDA) parameters from collapsed Gibbs samples (CGS), by leveraging the full conditional distributions over the latent variable assignments to efficiently average over multiple samples, for little more computational cost than drawing a single additional collapsed Gibbs sample....

Alternative Titles

Full title

Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2075398373

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2075398373

Other Identifiers

E-ISSN

2331-8422

How to access this item