Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA
Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA
About this item
Full title
Author / Creator
Publisher
Ithaca: Cornell University Library, arXiv.org
Journal title
Language
English
Formats
Publication information
Publisher
Ithaca: Cornell University Library, arXiv.org
Subjects
More information
Scope and Contents
Contents
We introduce a novel approach for estimating Latent Dirichlet Allocation (LDA) parameters from collapsed Gibbs samples (CGS), by leveraging the full conditional distributions over the latent variable assignments to efficiently average over multiple samples, for little more computational cost than drawing a single additional collapsed Gibbs sample....
Alternative Titles
Full title
Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA
Authors, Artists and Contributors
Author / Creator
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_proquest_journals_2075398373
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2075398373
Other Identifiers
E-ISSN
2331-8422