Finite element approximation of the \(p(\cdot)\)-Laplacian
Finite element approximation of the \(p(\cdot)\)-Laplacian
About this item
Full title
Author / Creator
Publisher
Ithaca: Cornell University Library, arXiv.org
Journal title
Language
English
Formats
Publication information
Publisher
Ithaca: Cornell University Library, arXiv.org
Subjects
More information
Scope and Contents
Contents
We study a~priori estimates for the Dirichlet problem of the \(p(\cdot)\)-Laplacian, \[-\mathrm{div}(|\nabla v|^{p(\cdot)-2} \nabla v) = f. \] We show that the gradients of the finite element approximation with zero boundary data converges with rate \(O(h^\alpha)\) if the exponent \(p\) is \(\alpha\)-H\"{o}lder continuous. The error of the gradient...
Alternative Titles
Full title
Finite element approximation of the \(p(\cdot)\)-Laplacian
Authors, Artists and Contributors
Author / Creator
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_proquest_journals_2075412307
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2075412307
Other Identifiers
E-ISSN
2331-8422