Log in to save to my catalogue

Unpaired image denoising using a generative adversarial network in X-ray CT

Unpaired image denoising using a generative adversarial network in X-ray CT

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2193414025

Unpaired image denoising using a generative adversarial network in X-ray CT

About this item

Full title

Unpaired image denoising using a generative adversarial network in X-ray CT

Publisher

Ithaca: Cornell University Library, arXiv.org

Journal title

arXiv.org, 2019-08

Language

English

Formats

Publication information

Publisher

Ithaca: Cornell University Library, arXiv.org

More information

Scope and Contents

Contents

This paper proposes a deep learning-based denoising method for noisy low-dose computerized tomography (CT) images in the absence of paired training data. The proposed method uses a fidelity-embedded generative adversarial network (GAN) to learn a denoising function from unpaired training data of low-dose CT (LDCT) and standard-dose CT (SDCT) images...

Alternative Titles

Full title

Unpaired image denoising using a generative adversarial network in X-ray CT

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2193414025

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2193414025

Other Identifiers

E-ISSN

2331-8422

DOI

10.48550/arxiv.1903.06257

How to access this item