Log in to save to my catalogue

Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimi...

Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimi...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2199611733

Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making

About this item

Full title

Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making

Publisher

Berlin/Heidelberg: Springer Berlin Heidelberg

Journal title

European radiology, 2019-10, Vol.29 (10), p.5458-5468

Language

English

Formats

Publication information

Publisher

Berlin/Heidelberg: Springer Berlin Heidelberg

More information

Scope and Contents

Contents

Objectives
To evaluate a deep convolutional neural network (dCNN) for detection, highlighting, and classification of ultrasound (US) breast lesions mimicking human decision-making according to the Breast Imaging Reporting and Data System (BI-RADS).
Methods and materials
One thousand nineteen breast ultrasound images from 582 patients (age...

Alternative Titles

Full title

Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2199611733

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2199611733

Other Identifiers

ISSN

0938-7994

E-ISSN

1432-1084

DOI

10.1007/s00330-019-06118-7

How to access this item