Log in to save to my catalogue

Meta-Model Framework for Surrogate-Based Parameter Estimation in Dynamical Systems

Meta-Model Framework for Surrogate-Based Parameter Estimation in Dynamical Systems

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2245978491

Meta-Model Framework for Surrogate-Based Parameter Estimation in Dynamical Systems

About this item

Full title

Meta-Model Framework for Surrogate-Based Parameter Estimation in Dynamical Systems

Publisher

Ithaca: Cornell University Library, arXiv.org

Journal title

arXiv.org, 2019-12

Language

English

Formats

Publication information

Publisher

Ithaca: Cornell University Library, arXiv.org

More information

Scope and Contents

Contents

The central task in modeling complex dynamical systems is parameter estimation. This task involves numerous evaluations of a computationally expensive objective function. Surrogate-based optimization introduces a computationally efficient predictive model that approximates the value of the objective function. The standard approach involves learning...

Alternative Titles

Full title

Meta-Model Framework for Surrogate-Based Parameter Estimation in Dynamical Systems

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2245978491

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2245978491

Other Identifiers

E-ISSN

2331-8422

DOI

10.48550/arxiv.1906.09088

How to access this item