Log in to save to my catalogue

Alteration of cardiolipin-dependent mitochondrial coupling in muscle protects against obesity

Alteration of cardiolipin-dependent mitochondrial coupling in muscle protects against obesity

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2264462388

Alteration of cardiolipin-dependent mitochondrial coupling in muscle protects against obesity

Publication information

Publisher

Cold Spring Harbor: Cold Spring Harbor Laboratory Press

More information

Scope and Contents

Contents

The tubular shape of mitochondrial cristae depends upon a specific composition of the inner mitochondrial membrane, including cardiolipin that allows strong curvature and promotes optimal organization of ATP synthase. Here we identify Hacd1, which encodes an enzyme involved in very long chain fatty acid biosynthesis, as a key regulator of composition, structure and functional properties of mitochondrial membranes in muscle. In Hacd1-deficient mice, the reduced cardiolipin content was associated with dilation of cristae and caused defective phosphorylating respiration, characterized by absence of proton leak and oxidative stress. The skeletal muscle-specific mitochondrial coupling defect produced a global elevation in basal energy expenditure with increased carbohydrate and lipid catabolism, despite decreased muscle mass and locomotor capacities. Mice were protected against diet-induced obesity despite reduced muscle activity, providing an in vivo proof of concept that reducing mitochondrial coupling efficiency in skeletal muscle might be an actionable mechanism in metabolic disease conditions. Footnotes * https://tinyurl.com/prola-tableS1...

Alternative Titles

Full title

Alteration of cardiolipin-dependent mitochondrial coupling in muscle protects against obesity

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2264462388

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2264462388

Other Identifiers

E-ISSN

2692-8205

DOI

10.1101/715953