Log in to save to my catalogue

Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning alg...

Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning alg...

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2414909724

Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms

About this item

Full title

Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms

Publisher

London: Nature Publishing Group UK

Journal title

Scientific reports, 2020-06, Vol.10 (1), p.9952-12, Article 9952

Language

English

Formats

Publication information

Publisher

London: Nature Publishing Group UK

More information

Scope and Contents

Contents

Forest aboveground biomass (AGB) plays an important role in the study of the carbon cycle and climate change in the global terrestrial ecosystem. AGB estimation based on remote sensing is an effective method for regional scale. In this study, Landsat 8 Operational Land Imager and Sentinel-1A data and China’s National Forest Continuous Inventory dat...

Alternative Titles

Full title

Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2414909724

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2414909724

Other Identifiers

ISSN

2045-2322

E-ISSN

2045-2322

DOI

10.1038/s41598-020-67024-3

How to access this item