Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning alg...
Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms
About this item
Full title
Author / Creator
Publisher
London: Nature Publishing Group UK
Journal title
Language
English
Formats
Publication information
Publisher
London: Nature Publishing Group UK
Subjects
More information
Scope and Contents
Contents
Forest aboveground biomass (AGB) plays an important role in the study of the carbon cycle and climate change in the global terrestrial ecosystem. AGB estimation based on remote sensing is an effective method for regional scale. In this study, Landsat 8 Operational Land Imager and Sentinel-1A data and China’s National Forest Continuous Inventory dat...
Alternative Titles
Full title
Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms
Authors, Artists and Contributors
Author / Creator
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_proquest_journals_2414909724
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2414909724
Other Identifiers
ISSN
2045-2322
E-ISSN
2045-2322
DOI
10.1038/s41598-020-67024-3