Log in to save to my catalogue

Unimodular hyperbolic triangulations: circle packing and random walk

Unimodular hyperbolic triangulations: circle packing and random walk

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2415721961

Unimodular hyperbolic triangulations: circle packing and random walk

About this item

Full title

Unimodular hyperbolic triangulations: circle packing and random walk

Publisher

Berlin/Heidelberg: Springer Berlin Heidelberg

Journal title

Inventiones mathematicae, 2016-10, Vol.206 (1), p.229-268

Language

English

Formats

Publication information

Publisher

Berlin/Heidelberg: Springer Berlin Heidelberg

More information

Scope and Contents

Contents

We show that the circle packing type of a unimodular random plane triangulation is parabolic if and only if the expected degree of the root is six, if and only if the triangulation is amenable in the sense of Aldous and Lyons [
1
]. As a part of this, we obtain an alternative proof of the Benjamini–Schramm Recurrence Theorem [
19
]. Sec...

Alternative Titles

Full title

Unimodular hyperbolic triangulations: circle packing and random walk

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2415721961

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2415721961

Other Identifiers

ISSN

0020-9910

E-ISSN

1432-1297

DOI

10.1007/s00222-016-0653-9

How to access this item