Parameter Estimation for RANS Models Using Approximate Bayesian Computation
Parameter Estimation for RANS Models Using Approximate Bayesian Computation
About this item
Full title
Author / Creator
Publisher
Ithaca: Cornell University Library, arXiv.org
Journal title
Language
English
Formats
Publication information
Publisher
Ithaca: Cornell University Library, arXiv.org
Subjects
More information
Scope and Contents
Contents
We use approximate Bayesian computation (ABC) to estimate unknown parameter values, as well as their uncertainties, in Reynolds-averaged Navier-Stokes (RANS) simulations of turbulent flows. The ABC method approximates posterior distributions of model parameters, but does not require the direct computation, or estimation, of a likelihood function. C...
Alternative Titles
Full title
Parameter Estimation for RANS Models Using Approximate Bayesian Computation
Authors, Artists and Contributors
Author / Creator
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_proquest_journals_2457442746
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2457442746
Other Identifiers
E-ISSN
2331-8422