Log in to save to my catalogue

Parameter Estimation for RANS Models Using Approximate Bayesian Computation

Parameter Estimation for RANS Models Using Approximate Bayesian Computation

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2457442746

Parameter Estimation for RANS Models Using Approximate Bayesian Computation

About this item

Full title

Parameter Estimation for RANS Models Using Approximate Bayesian Computation

Publisher

Ithaca: Cornell University Library, arXiv.org

Journal title

arXiv.org, 2020-11

Language

English

Formats

Publication information

Publisher

Ithaca: Cornell University Library, arXiv.org

More information

Scope and Contents

Contents

We use approximate Bayesian computation (ABC) to estimate unknown parameter values, as well as their uncertainties, in Reynolds-averaged Navier-Stokes (RANS) simulations of turbulent flows. The ABC method approximates posterior distributions of model parameters, but does not require the direct computation, or estimation, of a likelihood function. C...

Alternative Titles

Full title

Parameter Estimation for RANS Models Using Approximate Bayesian Computation

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2457442746

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2457442746

Other Identifiers

E-ISSN

2331-8422

How to access this item