Log in to save to my catalogue

Non-Bayesian Parametric Missing-Mass Estimation

Non-Bayesian Parametric Missing-Mass Estimation

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2477383130

Non-Bayesian Parametric Missing-Mass Estimation

About this item

Full title

Non-Bayesian Parametric Missing-Mass Estimation

Publisher

Ithaca: Cornell University Library, arXiv.org

Journal title

arXiv.org, 2022-06

Language

English

Formats

Publication information

Publisher

Ithaca: Cornell University Library, arXiv.org

More information

Scope and Contents

Contents

We consider the classical problem of missing-mass estimation, which deals with estimating the total probability of unseen elements in a sample. The missing-mass estimation problem has various applications in machine learning, statistics, language processing, ecology, sensor networks, and others. The naive, constrained maximum likelihood (CML) estim...

Alternative Titles

Full title

Non-Bayesian Parametric Missing-Mass Estimation

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2477383130

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2477383130

Other Identifiers

E-ISSN

2331-8422

DOI

10.48550/arxiv.2101.04329

How to access this item