The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification...
The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider
About this item
Full title
Author / Creator
Aarrestad, T , M van Beekveld , Bona, M , Boveia, A , Caron, S , Davies, J , De Simone, A , Doglioni, C , Duarte, J M , Farbin, A , Gupta, H , Hendriks, L , Heinrich, L , Howarth, J , Jawahar, P , Jueid, A , Lastow, J , Leinweber, A , Mamuzic, J , Merényi, E , Morandini, A , Moskvitina, P , Nellist, C , Ngadiuba, J , Ostdiek, B , Pierini, M , Ravina, B , Ruiz de Austri, R , Sekmen, S , Touranakou, M , Vaškevičiūte, M , Vilalta, R , Vlimant, J R , Verheyen, R , White, M , Wulff, E , Wallin, E , Wozniak, K A and Zhang, Z
Publisher
Ithaca: Cornell University Library, arXiv.org
Journal title
Language
English
Formats
Publication information
Publisher
Ithaca: Cornell University Library, arXiv.org
Subjects
More information
Scope and Contents
Contents
We describe the outcome of a data challenge conducted as part of the Dark Machines Initiative and the Les Houches 2019 workshop on Physics at TeV colliders. The challenged aims at detecting signals of new physics at the LHC using unsupervised machine learning algorithms. First, we propose how an anomaly score could be implemented to define model-independent signal regions in LHC searches. We define and describe a large benchmark dataset, consisting of >1 Billion simulated LHC events corresponding to \(10~\rm{fb}^{-1}\) of proton-proton collisions at a center-of-mass energy of 13 TeV. We then review a wide range of anomaly detection and density estimation algorithms, developed in the context of the data challenge, and we measure their performance in a set of realistic analysis environments. We draw a number of useful conclusions that will aid the development of unsupervised new physics searches during the third run of the LHC, and provide our benchmark dataset for future studies at https://www.phenoMLdata.org. Code to reproduce the analysis is provided at https://github.com/bostdiek/DarkMachines-UnsupervisedChallenge....
Alternative Titles
Full title
The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider
Authors, Artists and Contributors
Author / Creator
M van Beekveld
Bona, M
Boveia, A
Caron, S
Davies, J
De Simone, A
Doglioni, C
Duarte, J M
Farbin, A
Gupta, H
Hendriks, L
Heinrich, L
Howarth, J
Jawahar, P
Jueid, A
Lastow, J
Leinweber, A
Mamuzic, J
Merényi, E
Morandini, A
Moskvitina, P
Nellist, C
Ngadiuba, J
Ostdiek, B
Pierini, M
Ravina, B
Ruiz de Austri, R
Sekmen, S
Touranakou, M
Vaškevičiūte, M
Vilalta, R
Vlimant, J R
Verheyen, R
White, M
Wulff, E
Wallin, E
Wozniak, K A
Zhang, Z
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_proquest_journals_2535628624
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2535628624
Other Identifiers
E-ISSN
2331-8422
DOI
10.48550/arxiv.2105.14027