P854 Construction of the immune landscape of durable response to checkpoint blockade therapy by inte...
P854 Construction of the immune landscape of durable response to checkpoint blockade therapy by integrating publicly available datasets
About this item
Full title
Author / Creator
Rudqvist, Nils-Petter , Zappasodi, Roberta , Wells, Daniel , Thorsson, Vésteinn , Cogdill, Alexandria , Monette, Anne , Najjar, Yana , Sweis, Randy , Wennerberg, Erik , Bommareddy, Praveen , Haymaker, Cara , Khan, Uqba , McGee, Heather , Park, Wungki , Sater, Houssein Abdul , Spencer, Christine , Tschernia, Nicholas , Ascierto, Maria , Barsan, Valentin , Popat, Vinita , Valpione, Sara and Vincent, Benjamin
Publisher
London: BMJ Publishing Group LTD
Journal title
Language
English
Formats
Publication information
Publisher
London: BMJ Publishing Group LTD
Subjects
More information
Scope and Contents
Contents
BackgroundImmune checkpoint blockade (ICB) has revolutionized cancer treatment. However, long-term benefits are only achieved in a small fraction of patients. Understanding the mechanisms underlying ICB activity is key to improving the efficacy of immunotherapy. A major limitation to uncovering these mechanisms is the limited number of responders within each ICB trial. Integrating data from multiple studies of ICB would help overcome this issue and more reliably define the immune landscape of durable responses. Towards this goal, we formed the TimIOs consortium, comprising researchers from the Society for Immunotherapy of Cancer Sparkathon TimIOs Initiative, the Parker Institute of Cancer Immunotherapy, the University of North Carolina-Chapel Hill, and the Institute for Systems Biology. Together, we aim to improve the understanding of the molecular mechanisms associated with defined outcomes to ICB, by building on our joint and multifaceted expertise in the field of immuno-oncology. To determine the feasibility and relevance of our approach, we have assembled a compendium of publicly available gene expression datasets from clinical trials of ICB. We plan to analyze this data using a previously reported pipeline that successfully determined main cancer immune-subtypes associated with survival across multiple cancer types in TCGA.1 MethodsRNA sequencing data from 1092 patients were uniformly reprocessed harmonized, and annotated with predefined clinical parameters. We defined a comprehensive set of immunogenomics features, including immune gene expression signatures associated with treatment outcome,1,2 estimates of immune cell proportions, metabolic profiles, and T and B cell receptor repertoire, and scored all compendium samples for these features. Elastic net regression models with parameter optimization done via Monte Carlo cross-validation and leave-one-out cross-validation were used to analyze the capacity of an integrated immunogenomics model to predict durable clinical benefit following ICB treatment.ResultsOur preliminary analyses confirmed an association between the expression of an IFN-gamma signature in tumor (1) and better outcomes of ICB, highlighting the feasibility of our approach.ConclusionsIn line with analysis of pan-cancer TCGA datasets using this strategy (1), we expect to identify analogous immune subtypes characterizing baseline tumors from patients responding to ICB. Furthermore, we expect to find that these immune subtypes will have different importance in the model predicting response and survival. Results of this study will be incorporated into the Cancer Research Institute iAtlas Portal, to facilitate interactive exploration and hypothesis testing.ReferencesThorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Yang T-H O, Porta-Pardo E. Gao GF, Plaisier CL, Eddy JA, et al. The Immune Landscape of Cancer. Immunity 2018; 48(4): 812–830.e14. https://doi.org/10.1016/j.immuni.2018.03.023.Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, Moll T, Tian T, Wei Z, Madan S, Sullivan RJ, et al. Robust Prediction of Response to Immune Checkpoint Blockade Therapy in Metastatic Melanoma. Nat. Med 2018; 24(10): 1545. https://doi.org/10.1038/s41591-018-0157-9....
Alternative Titles
Full title
P854 Construction of the immune landscape of durable response to checkpoint blockade therapy by integrating publicly available datasets
Authors, Artists and Contributors
Author / Creator
Zappasodi, Roberta
Wells, Daniel
Thorsson, Vésteinn
Cogdill, Alexandria
Monette, Anne
Najjar, Yana
Sweis, Randy
Wennerberg, Erik
Bommareddy, Praveen
Haymaker, Cara
Khan, Uqba
McGee, Heather
Park, Wungki
Sater, Houssein Abdul
Spencer, Christine
Tschernia, Nicholas
Ascierto, Maria
Barsan, Valentin
Popat, Vinita
Valpione, Sara
Vincent, Benjamin
Identifiers
Primary Identifiers
Record Identifier
TN_cdi_proquest_journals_2553010722
Permalink
https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2553010722
Other Identifiers
E-ISSN
2051-1426
DOI
10.1136/LBA2019.8