Log in to save to my catalogue

Chunk-wise regularised PCA-based imputation of missing data

Chunk-wise regularised PCA-based imputation of missing data

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2668323361

Chunk-wise regularised PCA-based imputation of missing data

About this item

Full title

Chunk-wise regularised PCA-based imputation of missing data

Publisher

Berlin/Heidelberg: Springer Berlin Heidelberg

Journal title

Statistical methods & applications, 2022-06, Vol.31 (2), p.365-386

Language

English

Formats

Publication information

Publisher

Berlin/Heidelberg: Springer Berlin Heidelberg

More information

Scope and Contents

Contents

Standard multivariate techniques like Principal Component Analysis (PCA) are based on the eigendecomposition of a matrix and therefore require complete data sets. Recent comparative reviews of PCA algorithms for missing data showed the regularised iterative PCA algorithm (RPCA) to be effective. This paper presents two chunk-wise implementations of...

Alternative Titles

Full title

Chunk-wise regularised PCA-based imputation of missing data

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2668323361

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2668323361

Other Identifiers

ISSN

1618-2510

E-ISSN

1613-981X

DOI

10.1007/s10260-021-00575-5

How to access this item