Log in to save to my catalogue

Decompositions of Ehrhart h∗-Polynomials for Rational Polytopes

Decompositions of Ehrhart h∗-Polynomials for Rational Polytopes

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2669777526

Decompositions of Ehrhart h∗-Polynomials for Rational Polytopes

About this item

Full title

Decompositions of Ehrhart h∗-Polynomials for Rational Polytopes

Publisher

New York: Springer US

Journal title

Discrete & computational geometry, 2022-07, Vol.68 (1), p.50-71

Language

English

Formats

Publication information

Publisher

New York: Springer US

More information

Scope and Contents

Contents

The Ehrhart quasipolynomial of a rational polytope
P
encodes the number of integer lattice points in dilates of 
P
, and the
h

-polynomial of
P
is the numerator of the accompanying generating function. We provide two decomposition formulas for the
h

-polynomial of a rational polytope. The first decomposition...

Alternative Titles

Full title

Decompositions of Ehrhart h∗-Polynomials for Rational Polytopes

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2669777526

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2669777526

Other Identifiers

ISSN

0179-5376

E-ISSN

1432-0444

DOI

10.1007/s00454-021-00341-0

How to access this item