Log in to save to my catalogue

SentATN: learning sentence transferable embeddings for cross-domain sentiment classification

SentATN: learning sentence transferable embeddings for cross-domain sentiment classification

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2737807226

SentATN: learning sentence transferable embeddings for cross-domain sentiment classification

About this item

Full title

SentATN: learning sentence transferable embeddings for cross-domain sentiment classification

Publisher

New York: Springer US

Journal title

Applied intelligence (Dordrecht, Netherlands), 2022-12, Vol.52 (15), p.18101-18114

Language

English

Formats

Publication information

Publisher

New York: Springer US

More information

Scope and Contents

Contents

Cross-domain Sentiment Classification (CDSC) aims to exploit useful knowledge from the source domain to obtain a high-performance classifier on the target domain. Most of the existing methods for CDSC mainly concentrate on extracting domain-shared features, while ignoring the importance of domain-specific features. Besides, these approaches focus o...

Alternative Titles

Full title

SentATN: learning sentence transferable embeddings for cross-domain sentiment classification

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2737807226

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2737807226

Other Identifiers

ISSN

0924-669X

E-ISSN

1573-7497

DOI

10.1007/s10489-022-03434-2

How to access this item