Log in to save to my catalogue

Prediction and mapping soil organic carbon in Jianghan Plain by machine learning

Prediction and mapping soil organic carbon in Jianghan Plain by machine learning

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2820324830

Prediction and mapping soil organic carbon in Jianghan Plain by machine learning

About this item

Full title

Prediction and mapping soil organic carbon in Jianghan Plain by machine learning

Publisher

Tianjin: Journal of Agricultural Resources and Environment (JARE)

Journal title

Journal of agricultural resources and environment, 2023-01, Vol.40 (3), p.644

Language

Chinese

Formats

Publication information

Publisher

Tianjin: Journal of Agricultural Resources and Environment (JARE)

More information

Scope and Contents

Contents

土壤有机碳(SOC)不仅显著响应于表层,而且随深度的变化呈现不同的响应。江汉平原作为长江经济带农田生态系统的重要组成部分,其SOC垂向分布状况仍有待考察。本研究收集了2009—2012年湖北省土系调查的66个剖面数据,基于9个环境因子为协变量使用随机森林法构建 0~30、>30~60、>60~100 cm土层深度的 SOC含量预测模型,绘制了 30 m空间分辨率的 SOC含量分布图,并估算了 SOC 储量。结果表明,SOC 含量随土层深度的增加而减少,总体呈中东部高、西部低的特征。模型对表层(0~30 cm)SOC的预测精度最高(R2=0.45,RMSE=3.28 g·kg-1),温度、黏粒含量和降水对模型重要性居前三。江汉平原 1 m深 SOC储量为 183.75 Tg,>30~100 c...

Alternative Titles

Full title

Prediction and mapping soil organic carbon in Jianghan Plain by machine learning

Authors, Artists and Contributors

Identifiers

Primary Identifiers

Record Identifier

TN_cdi_proquest_journals_2820324830

Permalink

https://devfeature-collection.sl.nsw.gov.au/record/TN_cdi_proquest_journals_2820324830

Other Identifiers

ISSN

2095-6819

E-ISSN

2095-6819

DOI

10.13254/j.jare.2022.0583

How to access this item